跳到主要内容

std::ranges::rotate() 算法

// (1)
constexpr ranges::subrange<I>
rotate( I first, I middle, S last );

// (2)
constexpr ranges::borrowed_subrange_t<R>
rotate( R&& r, ranges::iterator_t<R> middle );

参数类型是泛型的,并具有以下约束

  • I - std::permutable
  • S - std::sentinel_for<I>
  • R - std::ranges::forward_range

此外,每个重载都有以下约束

  • (2) - std::permutable<ranges::iterator_t<R>>

反转元素的顺序。

  • (1) 对元素范围执行左旋转。具体而言,ranges::rotate 会交换范围 [first; last) 中的元素,使得元素 *middle 成为新范围的第一个元素,*(middle - 1) 成为最后一个元素。
未定义行为

行为未定义

如果 [first; last) 不是有效范围,或者 middle 不在 [first; last) 中。

  • ** (2)** 与 (1) 相同,但使用 r 作为范围,如同使用 ranges::begin(r) 作为 firstranges::end(r) 作为 last

本页描述的函数类实体是niebloids

参数

first
last

要旋转的元素范围。

r

要旋转的元素范围。

middle

指向在旋转范围开头出现的元素的迭代器。

返回值

{
new_first,
last
}

其中 new_firstranges::next(first, ranges::distance(middle, last)),并指定了 first 所指向元素的新位置。

复杂度

最坏情况下为线性:ranges::distance(first, last) 次交换。

异常

(无)

可能的实现

rotate(1) 和 rotate(2)
struct rotate_fn
{
template<std::permutable I, std::sentinel_for<I> S>
constexpr ranges::subrange<I>
operator()(I first, I middle, S last) const
{
if (first == middle)
{
auto last_it = ranges::next(first, last);
return {last_it, last_it};
}
if (middle == last)
return {std::move(first), std::move(middle)};

if constexpr (std::bidirectional_iterator<I>)
{
ranges::reverse(first, middle);
auto last_it = ranges::next(first, last);
ranges::reverse(middle, last_it);

if constexpr (std::random_access_iterator<I>)
{
ranges::reverse(first, last_it);
return {first + (last_it - middle), std::move(last_it)};
}
else
{
auto mid_last = last_it;
do
{
ranges::iter_swap(first, --mid_last);
++first;
}
while (first != middle && mid_last != middle);
ranges::reverse(first, mid_last);

if (first == middle)
return {std::move(mid_last), std::move(last_it)};
else
return {std::move(first), std::move(last_it)};
}
}
else
{ // I is merely a forward_iterator
auto next_it = middle;
do
{ // rotate the first cycle
ranges::iter_swap(first, next_it);
++first;
++next_it;
if (first == middle)
middle = next_it;
}
while (next_it != last);

auto new_first = first;
while (middle != last)
{ // rotate subsequent cycles
next_it = middle;
do
{
ranges::iter_swap(first, next_it);
++first;
++next_it;
if (first == middle)
middle = next_it;
}
while (next_it != last);
}

return {std::move(new_first), std::move(middle)};
}
}

template<ranges::forward_range R>
requires std::permutable<ranges::iterator_t<R>>
constexpr ranges::borrowed_subrange_t<R>
operator()(R&& r, ranges::iterator_t<R> middle) const
{
return (*this)(ranges::begin(r), std::move(middle), ranges::end(r));
}
};

inline constexpr rotate_fn rotate {};

备注

如果 I 模拟 bidirectional_iterator 或(更好)random_access_iterator,则 ranges::rotate 在常见实现中具有更好的效率。

当迭代器类型模拟 contiguous_iterator 并且其值类型的交换既不调用非平凡的特殊成员函数也不调用 ADL 找到的交换时,实现(例如 MSVC STL)可能会启用向量化。

示例

ranges::rotate 是许多算法中的常见构建块。此示例演示了插入排序。

Main.cpp
#include <algorithm>
#include <iostream>
#include <numeric>
#include <string>
#include <vector>

int main()
{
std::string s(16, ' ');

for (int k {}; k != 5; ++k)
{
std::iota(s.begin(), s.end(), 'A');
std::ranges::rotate(s, s.begin() + k);
std::cout << "Rotate left (" << k << "): " << s << '\n';
}
std::cout << '\n';

for (int k {}; k != 5; ++k)
{
std::iota(s.begin(), s.end(), 'A');
std::ranges::rotate(s, s.end() - k);
std::cout << "Rotate right (" << k << "): " << s << '\n';
}

std::cout << "\nInsertion sort using `rotate`, step-by-step:\n";

s = {'2', '4', '2', '0', '5', '9', '7', '3', '7', '1'};

for (auto i = s.begin(); i != s.end(); ++i)
{
std::cout << "i = " << std::ranges::distance(s.begin(), i) << ": ";
std::ranges::rotate(std::ranges::upper_bound(s.begin(), i, *i), i, i + 1);
std::cout << s << '\n';
}
std::cout << (std::ranges::is_sorted(s) ? "Sorted!" : "Not sorted.") << '\n';
}
输出
Rotate left (0): ABCDEFGHIJKLMNOP
Rotate left (1): BCDEFGHIJKLMNOPA
Rotate left (2): CDEFGHIJKLMNOPAB
Rotate left (3): DEFGHIJKLMNOPABC
Rotate left (4): EFGHIJKLMNOPABCD

Rotate right (0): ABCDEFGHIJKLMNOP
Rotate right (1): PABCDEFGHIJKLMNO
Rotate right (2): OPABCDEFGHIJKLMN
Rotate right (3): NOPABCDEFGHIJKLM
Rotate right (4): MNOPABCDEFGHIJKL

Insertion sort using `rotate`, step-by-step:
i = 0: 2420597371
i = 1: 2420597371
i = 2: 2240597371
i = 3: 0224597371
i = 4: 0224597371
i = 5: 0224597371
i = 6: 0224579371
i = 7: 0223457971
i = 8: 0223457791
i = 9: 0122345779
Sorted!
本文源自此 CppReference 页面。它可能为了改进或编辑者的偏好而进行了修改。单击“编辑此页面”以查看此文档所做的所有更改。
悬停查看原始许可证。

std::ranges::rotate() 算法

// (1)
constexpr ranges::subrange<I>
rotate( I first, I middle, S last );

// (2)
constexpr ranges::borrowed_subrange_t<R>
rotate( R&& r, ranges::iterator_t<R> middle );

参数类型是泛型的,并具有以下约束

  • I - std::permutable
  • S - std::sentinel_for<I>
  • R - std::ranges::forward_range

此外,每个重载都有以下约束

  • (2) - std::permutable<ranges::iterator_t<R>>

反转元素的顺序。

  • (1) 对元素范围执行左旋转。具体而言,ranges::rotate 会交换范围 [first; last) 中的元素,使得元素 *middle 成为新范围的第一个元素,*(middle - 1) 成为最后一个元素。
未定义行为

行为未定义

如果 [first; last) 不是有效范围,或者 middle 不在 [first; last) 中。

  • ** (2)** 与 (1) 相同,但使用 r 作为范围,如同使用 ranges::begin(r) 作为 firstranges::end(r) 作为 last

本页描述的函数类实体是niebloids

参数

first
last

要旋转的元素范围。

r

要旋转的元素范围。

middle

指向在旋转范围开头出现的元素的迭代器。

返回值

{
new_first,
last
}

其中 new_firstranges::next(first, ranges::distance(middle, last)),并指定了 first 所指向元素的新位置。

复杂度

最坏情况下为线性:ranges::distance(first, last) 次交换。

异常

(无)

可能的实现

rotate(1) 和 rotate(2)
struct rotate_fn
{
template<std::permutable I, std::sentinel_for<I> S>
constexpr ranges::subrange<I>
operator()(I first, I middle, S last) const
{
if (first == middle)
{
auto last_it = ranges::next(first, last);
return {last_it, last_it};
}
if (middle == last)
return {std::move(first), std::move(middle)};

if constexpr (std::bidirectional_iterator<I>)
{
ranges::reverse(first, middle);
auto last_it = ranges::next(first, last);
ranges::reverse(middle, last_it);

if constexpr (std::random_access_iterator<I>)
{
ranges::reverse(first, last_it);
return {first + (last_it - middle), std::move(last_it)};
}
else
{
auto mid_last = last_it;
do
{
ranges::iter_swap(first, --mid_last);
++first;
}
while (first != middle && mid_last != middle);
ranges::reverse(first, mid_last);

if (first == middle)
return {std::move(mid_last), std::move(last_it)};
else
return {std::move(first), std::move(last_it)};
}
}
else
{ // I is merely a forward_iterator
auto next_it = middle;
do
{ // rotate the first cycle
ranges::iter_swap(first, next_it);
++first;
++next_it;
if (first == middle)
middle = next_it;
}
while (next_it != last);

auto new_first = first;
while (middle != last)
{ // rotate subsequent cycles
next_it = middle;
do
{
ranges::iter_swap(first, next_it);
++first;
++next_it;
if (first == middle)
middle = next_it;
}
while (next_it != last);
}

return {std::move(new_first), std::move(middle)};
}
}

template<ranges::forward_range R>
requires std::permutable<ranges::iterator_t<R>>
constexpr ranges::borrowed_subrange_t<R>
operator()(R&& r, ranges::iterator_t<R> middle) const
{
return (*this)(ranges::begin(r), std::move(middle), ranges::end(r));
}
};

inline constexpr rotate_fn rotate {};

备注

如果 I 模拟 bidirectional_iterator 或(更好)random_access_iterator,则 ranges::rotate 在常见实现中具有更好的效率。

当迭代器类型模拟 contiguous_iterator 并且其值类型的交换既不调用非平凡的特殊成员函数也不调用 ADL 找到的交换时,实现(例如 MSVC STL)可能会启用向量化。

示例

ranges::rotate 是许多算法中的常见构建块。此示例演示了插入排序。

Main.cpp
#include <algorithm>
#include <iostream>
#include <numeric>
#include <string>
#include <vector>

int main()
{
std::string s(16, ' ');

for (int k {}; k != 5; ++k)
{
std::iota(s.begin(), s.end(), 'A');
std::ranges::rotate(s, s.begin() + k);
std::cout << "Rotate left (" << k << "): " << s << '\n';
}
std::cout << '\n';

for (int k {}; k != 5; ++k)
{
std::iota(s.begin(), s.end(), 'A');
std::ranges::rotate(s, s.end() - k);
std::cout << "Rotate right (" << k << "): " << s << '\n';
}

std::cout << "\nInsertion sort using `rotate`, step-by-step:\n";

s = {'2', '4', '2', '0', '5', '9', '7', '3', '7', '1'};

for (auto i = s.begin(); i != s.end(); ++i)
{
std::cout << "i = " << std::ranges::distance(s.begin(), i) << ": ";
std::ranges::rotate(std::ranges::upper_bound(s.begin(), i, *i), i, i + 1);
std::cout << s << '\n';
}
std::cout << (std::ranges::is_sorted(s) ? "Sorted!" : "Not sorted.") << '\n';
}
输出
Rotate left (0): ABCDEFGHIJKLMNOP
Rotate left (1): BCDEFGHIJKLMNOPA
Rotate left (2): CDEFGHIJKLMNOPAB
Rotate left (3): DEFGHIJKLMNOPABC
Rotate left (4): EFGHIJKLMNOPABCD

Rotate right (0): ABCDEFGHIJKLMNOP
Rotate right (1): PABCDEFGHIJKLMNO
Rotate right (2): OPABCDEFGHIJKLMN
Rotate right (3): NOPABCDEFGHIJKLM
Rotate right (4): MNOPABCDEFGHIJKL

Insertion sort using `rotate`, step-by-step:
i = 0: 2420597371
i = 1: 2420597371
i = 2: 2240597371
i = 3: 0224597371
i = 4: 0224597371
i = 5: 0224597371
i = 6: 0224579371
i = 7: 0223457971
i = 8: 0223457791
i = 9: 0122345779
Sorted!
本文源自此 CppReference 页面。它可能为了改进或编辑者的偏好而进行了修改。单击“编辑此页面”以查看此文档所做的所有更改。
悬停查看原始许可证。