std::ranges::lower_bound() 算法
- 自 C++20 起
- 简化
- 详细
// (1)
constexpr I
lower_bound( I first, S last, const T& value, Comp comp = {}, Proj proj = {} );
// (2)
constexpr ranges::borrowed_iterator_t<R>
lower_bound( R&& r, const T& value, Comp comp = {}, Proj proj = {} );
参数类型是泛型的,并具有以下约束
-
I
-std::forward_iterator
-
S
-std::sentinel_for<I>
-
R
-std::ranges::forward_range
-
Comp
:- (1) -
indirect_strict_weak_order< const T*, projected<I, Proj>>
- (2) -
indirect_strict_weak_order< const T*, projected<ranges::iterator_t<R>, Proj>>
(为方便阅读,此处省略了
std::
命名空间) - (1) -
-
T
- (无) -
Proj
- (无)
所有重载的 Proj
和 Comp
模板参数具有以下默认类型:std::identity
, ranges::less
。
// (1)
template<
std::forward_iterator I,
std::sentinel_for<I> S,
class T, class Proj = std::identity,
std::indirect_strict_weak_order< const T*, std::projected<I, Proj>> Comp = ranges::less
>
constexpr I
lower_bound( I first, S last, const T& value, Comp comp = {}, Proj proj = {} );
// (2)
template<
ranges::forward_range R,
class T,
class Proj = std::identity,
std::indirect_strict_weak_order< const T*, std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less
>
constexpr ranges::borrowed_iterator_t<R>
lower_bound( R&& r, const T& value, Comp comp = {}, Proj proj = {} );
-
(1) 返回一个迭代器,指向范围 [
first
;last
) 中第一个不小于 (即大于或等于)value
的元素,如果未找到此类元素,则返回last
。范围 [
first
;last
) 必须根据表达式comp(element, value)
进行分区,即,所有使表达式为true
的元素必须位于所有使表达式为false
的元素之前。完全排序的范围满足此条件。
-
(2) 与 (1) 相同,但使用
r
作为源范围,如同使用ranges::begin(r)
作为first
和ranges::end(r)
作为last
。
本页描述的函数类实体是niebloids。
参数
first last | 要检查的部分有序元素范围。 |
r | 要检查的部分有序元素范围。 |
值 | 用于比较元素的 `value`。 |
comp | 应用于投影元素的比较谓词。 |
proj | 应用于元素的投影。 |
返回值
指向第一个不小于 value
的元素的迭代器,如果未找到此类元素,则返回 last
。
复杂度
最多 log2(last - first) + O(1) 次比较和投影应用。
然而,对于不符合 random_access_iterator
模型的迭代器,迭代器增量次数是线性的。
异常
(无)
可能的实现
ranges::lower_bound
struct lower_bound_fn
{
template<std::forward_iterator I, std::sentinel_for<I> S,
class T, class Proj = std::identity,
std::indirect_strict_weak_order<
const T*,
std::projected<I, Proj>> Comp = ranges::less>
constexpr I operator()(I first, S last, const T& value,
Comp comp = {}, Proj proj = {}) const
{
I it;
std::iter_difference_t<I> count, step;
count = std::ranges::distance(first, last);
while (count > 0)
{
it = first;
step = count / 2;
ranges::advance(it, step, last);
if (comp(std::invoke(proj, *it), value))
{
first = ++it;
count -= step + 1;
}
else
count = step;
}
return first;
}
template<ranges::forward_range R, class T, class Proj = std::identity,
std::indirect_strict_weak_order<
const T*,
std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less>
constexpr ranges::borrowed_iterator_t<R>
operator()(R&& r, const T& value, Comp comp = {}, Proj proj = {}) const
{
return (*this)(ranges::begin(r), ranges::end(r), value,
std::ref(comp), std::ref(proj));
}
};
inline constexpr lower_bound_fn lower_bound;
示例
#include <algorithm>
#include <iostream>
#include <iterator>
#include <vector>
namespace ranges = std::ranges;
template<std::forward_iterator I, std::sentinel_for<I> S, class T,
class Proj = std::identity,
std::indirect_strict_weak_order<
const T*,
std::projected<I, Proj>> Comp = ranges::less>
constexpr
I binary_find(I first, S last, const T& value, Comp comp = {}, Proj proj = {})
{
first = ranges::lower_bound(first, last, value, comp, proj);
return first != last && !comp(value, proj(*first)) ? first : last;
}
int main()
{
std::vector data{1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5};
// ^^^^^^^^^^
auto lower = ranges::lower_bound(data, 4);
auto upper = ranges::upper_bound(data, 4);
std::cout << "found a range [" << ranges::distance(data.cbegin(), lower)
<< ", " << ranges::distance(data.cbegin(), upper) << ") = { ";
ranges::copy(lower, upper, std::ostream_iterator<int>(std::cout, " "));
std::cout << "}\n";
// classic binary search, returning a value only if it is present
data = {1, 2, 4, 8, 16};
// ^
auto it = binary_find(data.cbegin(), data.cend(), 8); // '5' would return end()
if (it != data.cend())
std::cout << *it << " found at index "<< ranges::distance(data.cbegin(), it);
}
found a range [6, 10) = { 4 4 4 4 }
8 found at index 3