跳到主要内容

std::ranges::count_if() 算法

// (1)
constexpr std::iter_difference_t<I>
count_if( I first, S last, Pred pred, Proj proj = {} );

// (2)
constexpr ranges::range_difference_t<R>
count_if( R&& r, Pred pred, Proj proj = {} );

参数类型是泛型的,并具有以下约束

  • I - std::input_iterator
  • S - std::sentinel_for<I>
  • R - std::ranges::input_range
  • Pred:
    • (1) - std::indirect_unary_predicate<std::projected<I, Proj>>
    • (2) - std::projected<ranges::iterator_t<R>, Proj>>
  • P - (无)

对于所有重载,Proj 模板参数的默认类型为 std::identity

返回给定范围内满足特定条件的元素数量。

  • (1) 计算谓词 p 返回 true 的元素。
  • (2)(1) 相同,但使用 r 作为源范围,如同使用 ranges::begin(r) 作为 firstranges::end(r) 作为 last

本页描述的函数类实体是niebloids

参数

first
last

要检查的元素范围。

r

要检查的元素范围。

pred

应用于投影元素的谓词。

proj

应用于元素的投影。

返回值

  • (1 - 2) 谓词 ptrue 的元素数量。

复杂度

给定 Nranges::distance(first, last)

  • (1 - 2) p 和投影的调用次数恰好为 N

异常

(无)

可能的实现

ranges::count_if
struct count_if_fn
{
template<std::input_iterator I, std::sentinel_for<I> S,
class Proj = std::identity,
std::indirect_unary_predicate<std::projected<I, Proj>> Pred>
constexpr std::iter_difference_t<I>
operator()(I first, S last, Pred pred, Proj proj = {}) const
{
std::iter_difference_t<I> counter = 0;
for (; first != last; ++first)
if (std::invoke(pred, std::invoke(proj, *first)))
++counter;
return counter;
}

template<ranges::input_range R, class Proj = std::identity,
std::indirect_unary_predicate<
std::projected<ranges::iterator_t<R>, Proj>> Pred>
constexpr ranges::range_difference_t<R>
operator()(R&& r, Pred pred, Proj proj = {}) const
{
return (*this)(ranges::begin(r), ranges::end(r),
std::ref(pred), std::ref(proj));
}
};

inline constexpr count_if_fn count_if;

备注

如果您想获取范围 [first; last) 或 r 中元素的数量,且没有任何额外条件,请使用 ranges::distance

示例

Main.cpp
#include <algorithm>
#include <iostream>
#include <vector>

int main()
{
std::vector<int> v {1, 2, 3, 4, 4, 3, 7, 8, 9, 10};

namespace ranges = std::ranges;

// determine how many integers in a std::vector match a target value.
int target1 = 3;
int target2 = 5;
int num_items1 = ranges::count_if(v.begin(), v.end(), target1);
int num_items2 = ranges::count_if(v, target2);
std::cout << "number: " << target1 << " count_if: " << num_items1 << '\n';
std::cout << "number: " << target2 << " count_if: " << num_items2 << '\n';

// use a lambda expression to count_if elements divisible by 3.
int num_items3 = ranges::count_if_if(v.begin(), v.end(), [](int i) {return i % 3 == 0;});
std::cout << "number divisible by three: " << num_items3 << '\n';

// use a lambda expression to count_if elements divisible by 11.
int num_items11 = ranges::count_if_if(v, [](int i) {return i % 11 == 0;});
std::cout << "number divisible by eleven: " << num_items11 << '\n';
}
输出
number: 3 count_if: 2
number: 5 count_if: 0
number divisible by three: 3
number divisible by eleven: 0
本文源自此 CppReference 页面。它可能为了改进或编辑者偏好而进行了修改。点击“编辑此页面”查看本文档的所有更改。
悬停查看原始许可证。

std::ranges::count_if() 算法

// (1)
constexpr std::iter_difference_t<I>
count_if( I first, S last, Pred pred, Proj proj = {} );

// (2)
constexpr ranges::range_difference_t<R>
count_if( R&& r, Pred pred, Proj proj = {} );

参数类型是泛型的,并具有以下约束

  • I - std::input_iterator
  • S - std::sentinel_for<I>
  • R - std::ranges::input_range
  • Pred:
    • (1) - std::indirect_unary_predicate<std::projected<I, Proj>>
    • (2) - std::projected<ranges::iterator_t<R>, Proj>>
  • P - (无)

对于所有重载,Proj 模板参数的默认类型为 std::identity

返回给定范围内满足特定条件的元素数量。

  • (1) 计算谓词 p 返回 true 的元素。
  • (2)(1) 相同,但使用 r 作为源范围,如同使用 ranges::begin(r) 作为 firstranges::end(r) 作为 last

本页描述的函数类实体是niebloids

参数

first
last

要检查的元素范围。

r

要检查的元素范围。

pred

应用于投影元素的谓词。

proj

应用于元素的投影。

返回值

  • (1 - 2) 谓词 ptrue 的元素数量。

复杂度

给定 Nranges::distance(first, last)

  • (1 - 2) p 和投影的调用次数恰好为 N

异常

(无)

可能的实现

ranges::count_if
struct count_if_fn
{
template<std::input_iterator I, std::sentinel_for<I> S,
class Proj = std::identity,
std::indirect_unary_predicate<std::projected<I, Proj>> Pred>
constexpr std::iter_difference_t<I>
operator()(I first, S last, Pred pred, Proj proj = {}) const
{
std::iter_difference_t<I> counter = 0;
for (; first != last; ++first)
if (std::invoke(pred, std::invoke(proj, *first)))
++counter;
return counter;
}

template<ranges::input_range R, class Proj = std::identity,
std::indirect_unary_predicate<
std::projected<ranges::iterator_t<R>, Proj>> Pred>
constexpr ranges::range_difference_t<R>
operator()(R&& r, Pred pred, Proj proj = {}) const
{
return (*this)(ranges::begin(r), ranges::end(r),
std::ref(pred), std::ref(proj));
}
};

inline constexpr count_if_fn count_if;

备注

如果您想获取范围 [first; last) 或 r 中元素的数量,且没有任何额外条件,请使用 ranges::distance

示例

Main.cpp
#include <algorithm>
#include <iostream>
#include <vector>

int main()
{
std::vector<int> v {1, 2, 3, 4, 4, 3, 7, 8, 9, 10};

namespace ranges = std::ranges;

// determine how many integers in a std::vector match a target value.
int target1 = 3;
int target2 = 5;
int num_items1 = ranges::count_if(v.begin(), v.end(), target1);
int num_items2 = ranges::count_if(v, target2);
std::cout << "number: " << target1 << " count_if: " << num_items1 << '\n';
std::cout << "number: " << target2 << " count_if: " << num_items2 << '\n';

// use a lambda expression to count_if elements divisible by 3.
int num_items3 = ranges::count_if_if(v.begin(), v.end(), [](int i) {return i % 3 == 0;});
std::cout << "number divisible by three: " << num_items3 << '\n';

// use a lambda expression to count_if elements divisible by 11.
int num_items11 = ranges::count_if_if(v, [](int i) {return i % 11 == 0;});
std::cout << "number divisible by eleven: " << num_items11 << '\n';
}
输出
number: 3 count_if: 2
number: 5 count_if: 0
number divisible by three: 3
number divisible by eleven: 0
本文源自此 CppReference 页面。它可能为了改进或编辑者偏好而进行了修改。点击“编辑此页面”查看本文档的所有更改。
悬停查看原始许可证。